Semantic Process Retrieval with iSPARQL

نویسندگان

  • Christoph Kiefer
  • Abraham Bernstein
  • Hong Joo Lee
  • Mark Klein
  • Markus Stocker
چکیده

The vision of semantic business processes is to enable the integration and inter-operability of business processes across organizational boundaries. Since different organizations model their processes differently, the discovery and retrieval of similar semantic business processes is necessary in order to foster inter-organizational collaborations. This paper presents our approach of using iSPARQL– our imprecise query engine based on SPARQL– to query the OWL MIT Process Handbook– a large collection of over 5000 semantic business processes. We particularly show how easy it is to use iSPARQL to perform the presented process retrieval task. Furthermore, since choosing the best performing similarity strategy is a non-trivial, data-, and context-dependent task, we evaluate the performance of three simple and two human-engineered similarity strategies. In addition, we conduct machine learning experiments to learn similarity measures showing that complementary information contained in the different notions of similarity strategies provide a very high retrieval accuracy. Our preliminary results indicate that iSPARQL is indeed useful for extending the reach of queries and that it, therefore, is an enabler for interand intra-organizational collaborations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Analyzing Software with iSPARQL

One of the most important decisions researchers face when analyzing software systems is the choice of a proper data analysis/exchange format. In this paper, we present EvoOnt, a set of software ontologies and data exchange format based on OWL. EvoOnt models software design, release history information, and bug-tracking meta-data. Since OWL describes the semantics of the data, EvoOnt is (1) easi...

متن کامل

The Fundamentals of iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks

This research explores three SPARQL-based techniques to solve Semantic Web tasks that often require similarity measures, such as semantic data integration, ontology mapping, and Semantic Web service matchmaking. Our aim is to see how far it is possible to integrate customized similarity functions (CSF) into SPARQL to achieve good results for these tasks. Our first approach exploits virtual trip...

متن کامل

Boosting Passage Retrieval through Reuse in Question Answering

Question Answering (QA) is an emerging important field in Information Retrieval. In a QA system the archive of previous questions asked from the system makes a collection full of useful factual nuggets. This paper makes an initial attempt to investigate the reuse of facts contained in the archive of previous questions to help and gain performance in answering future related factoid questions. I...

متن کامل

بررسی مشکلات جستوجو و بازیابی اطلاعات در پایگاههای اطلاعاتی از جنبه ویژگیهای نگارشی زبان فارسی

The present research was carried out with the aim of explicating the major writing and semantic problems of Persian language when using data environments and determining the degree of compatibility and attention to these features in Persian databases. This research is of survey analytical type being conducted through direct observation. Having reviewed the related literature, we kept a checkli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007